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R F M AR W & %4 (Wltage Sourced Converter based High \Voltage DC
Transmission, VSC-HVDC)£ & & i % & -F & & = & -F J 14 & 42 A (Neutral Point
Clamped, NPC) % #£% . EANw A wFF XS HAERA AL, ARt HYDC F 8
mek, FEFINAFXEMFERLRIMERN, FTXEMHFPRALEANFEL, —£HY
JE, BRdmfT AT XBES A XBTRET, e E-FHmyilad NP SAZ
AT E, BPEANBTT RSG5 B IR B R . BRI AA
Pl A A K, BATRA ABB S LIRXEH RS, A THE-Flo =4 -F6
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B 1. MMC #&4-H.

2001 7% 2 49 R. Marquardt #4242 & 7434 % . -F T 3 25 (Modular Multilevel
Converter), 4&ih4| 1 A, EA A THE[2]:
o) KEAR I (FAHRAMLEH) KFmk, TELTRFRELE,
FLFEART #2384
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B FRATAK, RAKRE, REHFEETLIS B AT A TR
PRT
o EZ, R AETLE 99.5%.

WT ALK E, WmZ EANENARFER, MMCBRAESSELAMECT S,
AR T RE A, 2010 F 11 A, dHITFARENHER EF—ALF MMC &£
P E R & % Trans Bay Cable /2 L3 NAE H, EILT RAFIH R 4FE [3]. ABB
Fo Alstom AR TR AT 50, HEdH T M F & BAT, MMC BRAR A€ -Ffe = F &
BB, RAFERLRMEN LRGI. BAXEREALRKCRRGFTF LA S T 2003
F, BUF TR A, BATCA EEEHILTEIA (20MW/330kY, 2011 F), &
R %550 (200MW/H60KV, 2013 ), b %sme (400WM/2200kV, 2014 %),
JB I3 A2 (1000MW/4320kV, 2015 4F) & TA24%iz[4].

MMC & K R BIRMmR, SAKEBXRSZNEL LT E 4w %, Hl4e Trans
Bay Cable 571 Bl ¥, 3.4 A2iE 2400 4~ IGBT #= 1200 . £ £ [3]. mAR#% S. Yang %
FHGTLAELER, CHLTEARELERTREPHEERSOLEH[]. B
M, MMC TH®#HEEERARLS THAATHRE, ENATHGEELEKmE
RRE, A RINBEERER, BRALIETEF (BPila2 k&), kM
AEiE AN HVDC 2 Stk o HLE M SN ENAL I 69 MMC ZH HiRME R %,
RUE—MAKB AT, ARZATRARS —ANHUER. FA—2RHKE
mRER, FERKmARFE, DRI ERME ), FEFEnE X6ERKEF
MK, #l4e 2013 F5 A 21 H, REHANRSZHAFE 3 NI AL, HERT 494 35
L% LM 2 KK [6] 4ofT42 3 MMC-HVDC # %69 7T S5, FRIE 3 S 18] B 35 47 A%,
AT —AWMAETRMEGHIKEQTFLRA, ZHEF—NPREZNH 7L MMC
KM IGBT ol 28 5 69 3 (2 74 17 .

A B A3 MMC W 57 £ 54 IGBT Ao 5 5 T A LAG 3% : IGBT FF 38 # [
AW L BREN, RE—FERETHEOMRET T, XL EREMBRAE
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BARETHE, TESITE R IGBT & &4 W7 AL 4 77 ik 69 K5k &

1) Vee iBfRAtaill. IGBT 89 5% wA- K HMETE Ve 5IRE IGBT 89 iR — R
EAGAELSEEAZ, % IGBT B4 BT AN, Ve 5225 T EH/E, A RX
ANHEPE ST H BT IGBT R & A48k 5 [8]. XAk £ A, A& IGBT Lkt A&
B XBT S, S TR, REZITRIBHSAARERT AD R, 12R-1Z T ER
£ IGBT BURATA 2L, E AN R $ R 4581,

2) IGBT ®ik ic &M, @iZAMAL IGBT 690k i RFIBr %, #RAETEK
RE R, TREAE (Rogowski Coil) REZJTHEEI, @i —ANFHbs >4
B e F[9]e XA T R T AR R RF MBI E, AfmE MMC-HVDC ¥, A%
IGBT &9 ATE LEF %3, REWPUKXCANE RAMHRT KRABRAKS; &
ML AL K, REESTRKERMHFE,

) BAR W FAR I o A 47 1% w58 R FR B IGBT 89 ik, 4 if w3k i — AN AL IGBT
few L& MR, 51 IGBT HFHk. A2 1 IGBT 690 AT ek Rk
513, ARAEZEERITRE S, THEF IGBT 69575 R F 4858 4K F[10]. 7k
FHREDFERG LA, BRARS (FZ2—A546 IGBT),

4) di/dt 40, £ B m A& i = ka9 L Tolbert %42 IGBT #ii4HE did/dt
YR BAF AR IGBT 897 %2 %, difdt 47T kANt A B [11]. %7 E R A
B, 2RAEHRERE, EASHA R ESEGTRME.,

4) MAAZ 54N, M. A R-Blanco % & @ 42 [T € & LA 5K -F 60
B, kP IGBT AT A 3% RILBKE, ANt E R E 2 3us[12]. L. Chen
FEH BTN IGBT ITHAY AL ik k5 W7 738 R AL B [13]. X £ 75 ikt
B, AR, 122 RAEFXBESLER, T EFBRENFAAGKSE, 23T
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B -FiE T B AT R kAN IGBT sk %, 0L36-F 3 ik Park &2 %,
ZAERFHMEE. A THE TG I GRS, SRETLKXFG TR
AT IR BT T RIFELE[14]. X—EFERELSMMC H 5L F T8 E,
AARFRAHEGEREZE, Fob, THREGH G €ER LR THELY
Meynard ¥ 524 K k35 & 542 A (Flying Capacitor Clamped) % . -F % 4% 3 494
HEEPRIGTXIMES)ZV, : EFHAT, Zo52RALNV| R BN, ||
BET K, V09 A T ARG TG B4R B [15]. A. Yazdani 5 52 0] 72 8 3%
DA B E | T AR SRR G AR ARG B ik B R AR T RE[16]. K K kA4S T
LEEXLZEFEHRE, EREEFHRAT RN, HELHOEHAELLE T WE
FlRMEEEGTRIIEFZ ), RESHARFLAKE, HIMXLT HESAN
HE S R B R ER L. L Tolbert 53 HFLRATHFREELATSZE-FEREND
BN, BRI EMELERLFLTRA 76%, HKERTW[1T]. PHEAL
T X RFIORE LI EAFE MMC T35k IGBT 697 363 517, A TR M
% (Sliding Mode Observer, SMO), K& A5 8-1E 69 T4, At /2 20 =& £ & {27
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WiE A&, — &4 EIEE[20,21]. —A%, BB EE T EA2T 5%~10% (B
RRAmS), £ FRE MR ZAE LA, BF L EEMEL B mIEIEY
5%~1001F H & 54 4 2545 69 41 & [20, 21].

ATRECRNGF o, — T @ T UK 2kt egFE T2, ARIERT B,
E A MMC-HVDC #: 5 8 4 7 # & A28 T SE 1, & 8 — AL A E S Vishay 5 2 8]

, AR AFGE 20~30 F. RAR, A#HGITELNEREZRELA. F—TT |,
7T VAGE A B oy X G R e B BR L, B AR T SE bk

H Wbk — MR A C=([idt)/ Ay, ke EE, AT i AREELRNERE,
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CAHIRFH G A ARBF R CR/E, A BA LB, B2/ MEK, RRKIEEZL
4.3%[22]. Y.-). Jo ¥ FHRAMINIER S, FE B )3 R A A& AET MMC
FAkw Re, FHETRERNDET 1.3%[23]. BRZFEFEL S, THEX
FHAMEEIBE K K-W. Lee FFHFRBEA T ARG T LEEZURAZERE: £THER
WA, Ah—AMEIR. B Z ST PWM 155, 38 K Av, 6948, #o) B 5 i
B £[24]. R, BB FTXRES MMC TR E % $ 4915+ —MMC-HVDC &
B R 1) B AR .

B P SN 5T 0 AT & T VAR, MMC 89 -F 483 IGBT #9340 & R e A
ZR ik, BAMGAEETRR: RAELH &P, 1) BRFAMNFHETE, A
JTiZ, AR A IGBT RATA &, BAFANTEFRAGEBIE; 2) i AN, 4
Bl Rk E 2N EIRZ IGBT 9 KEIR, FIINERBRARS, ¥mT 1hEa
B & 3) didt e s TH &, HRAFHATRALRS,; 4) NMHETH
MAELS TR CIE I MMCo 3450 75 ik F, AT oA iR S
W& R T ERE S TERFXSE MMC, wiFARS a9 A TR S 695
Bk, BBk EAdL (20ms) BT AT E, 12 R S AKEH KI5 A2
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Ak, wIFEA4LIT MMC ¥ IGBT 87 s fedg sk dk g, ARERMNER, Rl
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KRB, Rd TR E L0 ik ARNCHGTEREA, £EEEF
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MMC F#3d 4 (R H ) fe—Awgan (LA 1), IGBT 45 i&
FRRNE A, wREARE, EEACERRE TR, ThREZZRKTHAERL
Wl an s, AEF RN MMC & —HALE, Rib—HAFHB L ELEER
09 IGBT 423K F LW w34 . i BB H L(RE 2 LR A LR S FE4]),
Wit e A R TR E, FELTTRES, 0 IGBT e945838 %,

IGBT &9 7 54 SAEE M EAR AL G, #E TR IR, THTEIRMAEN,
& MMC BT 475 FAR e 0 69 2 AR SN =T B R kol ZAR S 64 1 5. 28
HEE GRS VAR R — 5, REREEGRERSEA— 8, RERS MMC B &
WEREFG, AMBGFE, REKBENES MMC @M, A MMC %A
RANE R AWM EATRE AL, AFHRSERERRNIE . AARGEALA
KW B g 2 b T Ak .
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Fault Detection for Modular Multilevel Converters Based on Sliding
Mode Observer

Shuai Shao, Patrick W. Wheeler, Jon C. Clare, and Alan J. Watson

Abstract—This letter presents a fault detection method for mod-
ular multilevel converters which is capable of locating a faulty
semiconductor switching device in the circuit. The proposed fault
detection method is based on a sliding mode observer (SMO) and
a switching model of a half-bridge, the approach taken is to con-
jecture the location of fault, modify the SMO accordingly and then
compare the observed and measured states to verify, or otherwise,
the assumption. This technique requires no additional measure-
ment elements and can easily be implemented in a DSP or mi-
crocontroller. The operation and robustness of the fault detection
technique are confirmed by simulation results for the fault con-
dition of a semiconductor switching device appearing as an open
circuit.

Index Terms—Fault detection, modular multilevel converter
(MMUQO), sliding mode observer (SMO), switching model.

1. INTRODUCTION

HE modular multilevel converter (MMC) has drawn con-
T siderable interest, as it offers very attractive features
[1]-{4]:

1) modular construction with scalable, manufacturable, stan-

dardised cells (half-bridge);

2) submodules are fed by floating dc capacitors, no multi-

pulse transformer is required;

3) high power and high voltage capability, extendable by

adding additional cells;

4) flexible control of the voltage level and simple realization

of redundancy if required.

Fault detection is an important issue for an MMC. When an
open-circuit fault occurs, the output voltage and current are dis-
torted, moreover, the voltages of the dc floating capacitors will
keep increasing, leading to further, vast destruction. Therefore,
itis vital to locate the fault after its occurrence and take measures
such as bypassing the faulty cell to reconfigure the MMC.
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Given the large numbers of identical cells (half-bridge) and
the symmetrical structure of the converter, the process of fault
location in an MMC is challenging if significant extra cost is
to be avoided. An effective but inefficient way to detect faults
is to add additional sensors to each semiconductor switching
device [5], to each cell [6], or to use a gate drive module ca-
pable of detecting faults and providing feedback [7]. These
additional sensors and signals increase not only the cost but
also the implementation complexity. Some conventional fault
detection methods for voltage source converters (VSCs), such
as the calculation of the output current trajectory using Park’s
Vector [8], [9], or comparison of the actual ac voltage and the
reference quantity [10] are, however, not suitable for an MMC,
as there is not enough information present to locate the fault.

Fault diagnosis methods for a cascaded H-bridge (CHB) are
applicable to an MMC because of the similar structure. The
authors in [11] presented a detection approach for a CHB mul-
tilevel converter, which analyzes magnitude of the switching
frequency component (v,) of the output phase voltage: v, be-
comes significantly larger after the occurrence of a fault due
to the imbalanced cancellation of the switching frequency har-
monics. The faulty cell can be located according to the angle
of v, [11]. However, the faulty switching device cannot be lo-
cated, and it is complex to implement and easy to get the wrong
diagnosis in transient operation. In [12], the authors proposed
an artificial intelligence (AI)-based algorithm to detect the fault
of a CHB, the major drawbacks are the accuracy (only 76% in
some cases) and the long training time required for the circuit
and all the fault scenarios.

This letter proposes a sliding mode observer (SMO)-based
fault detection method for an MMC. The method uses the con-
verter arm currents and the cell capacitor voltages as the inputs,
which are already available as measurement inputs to the control
system, no additional sensors are required. Using this method
not only the faulty cell, but also the faulty switching device can
be located. Moreover, inherited from the easy implementation
and robustness of the SMO [13]-[15], this method has good
immunity to conditions such as transient operation, degradation
of capacitance over time, and measurement inaccuracies.

II. SWITCHING MODEL OF A HALF-BRIDGE

A half-bridge (see Fig. 1) is the basic cell of an MMC. In
order to diagnose an open-circuit fault, it is essential to identify
the characteristics of a half-bridge as observed from its dc-side
and ac-side both in normal and fault conditions.

0885-8993/$31.00 © 2013 IEEE
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(b)

Fig. 1. Switching model of half-bridge. (a) Normal condition. (b) Fault con-
dition (an open-circuit fault at 77 ).

TABLE I
SWITCHING STATE S IN NORMAL CONDITION

S | Driving signals

g1=192=0
0] g1=0,2=1

g1 and g9 in Fig. 1 are the gate signals for the switches, and
are complementary. When the gate signal is 1, the corresponding
switch turns ON; when it is 0, the corresponding switch turns
OFF.

The analysis assumes ideal devices and instantaneous com-
mutation. The fault detection method is, however, robust against
nonideal device characteristics. This is verified in the all of
the simulation results where generous values of 5 V and 1 us
are included for the device voltage drop and dead-time delay
respectively.

1) Normal (Fault-Free) Condition: As shown in Fig. 1(a),
when g1 = 1,90 =0, T} is ON and T, is OFF, thus V,. =
Ve, tde = tac; alternatively, when ¢y =0, g0 =1, Vi =
0,%q. = 0. Therefore, the relationship between the ac-side and
dc-side voltages and currents can be calculated as

{‘/ac =5 Vae
ide = S lac

ey

where S is the switching state given by Table I.

2) Fault Condition: In the fault condition (one open-circuit
fault of the switch), the switching models can still be described
as (1), but the switching states .S have to be modified.

Consider the half-bridge with an open circuit fault at 77, as
shown in Fig. 1(b). When g1 = 1,4,. < 0, 2, is forced to go
through Ds instead of 77 as the result of the open-circuit fault.
Thus, the switching state S should be changed from 1 to 0. For
all other conditions, the half-bridge operates just as normal.

When the open-circuit fault occurs on 75, the switching state
can be modified in a similar way. Table II demonstrates the
modifications of switching states of a faulty half-bridge.

III. SLIDING MODE OBSERVER

An observer is a contrivance designed from a real system,
generally in the same mathematical form as the original sys-
tem, so as to estimate its internal state [13], [16]. The SMO

IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 28, NO. 11, NOVEMBER 2013

TABLE II
SWITCHING STATE S IN FAULT CONDITION
Location of Condition Switching State
the fault Normal Fault
T g1 =1,40e <0 1 Sp=0
Other conditions S Sp =25
TS g2 = 1,44 >0 0 Sm =1l
Other conditions S Sp=S5
Upper arm current——iP
1000
Cell 1 }11, %
M s00.J¢
w] B T =
T2 |cena[dy, %
; s00t §
Q 01 0.2 0.3 0.4
Capacitor voltage of Cell 1--V_,
4000 <
aooo} §%
M1 Sefemmmammamaasaanany
2L E |Cell 5| v, 2%}
T3 oo T
i : 1000¢
L 4
Cell8| L., TP "
e * % ﬁmg{zs] e %
woun Observed states w— Simulated states
(a) (b)
Fig. 2. (a) Eight cell MMC circuit (each cell represents a half-bridge).

(b) SMO simulated results in normal conditions.

uses high-gain feedback in the observer vector (normally in
the form of a high-frequency switching function, for example
the saturation function of an observed-measured error, as (3)
and (4) present) to force the observed output to converge to
the actual output [13], [15]. The SMO offers desirable features
such as robustness to parameter uncertainty and insensitivity to
measurement noise [13]-[15], [17]. With simple realization, the
SMO can be implemented in the field-programmable gate array
(FPGA) [16], [17].

Based on [16] and [18], the SMO can be developed for a
single-phase eight cell MMC as shown in Fig. 2(a). The equa-
tions which characterize the upper arm can be expressed as

di 1 FE
7: =7 (5'111(;1 + 5202 + S30c34+S4ves + v, — 2)
dvci 1 . .

= =5, =1 4
dt CSIZP(Z a2735 ) (2)

where [ is the arm inductance, as shown in Fig. 2(a), C'is the dc-
capacitance, v.1, . . ., Ucq are the capacitor voltages of cell 1 to
cell 4, respectively, St, ..., Sy are the corresponding switching
states of the half-bridges given by Table I.

If ip and one of the capacitor voltages (v.1, ..., V.4, We
consider v, in this case) are selected to be observed, then the
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SMO equations are

di 1
e iR S10c1 + Savea + S3ve3 + Sivc4
dt l
E R
+ v, — 2) — Llsat(ip — ip)
CiAC 1 o - .
Stl = 651213 — Losat(—1S; Lysat(tp —ip)) 3)

where i p and 7.5 denote the observed states associated
with the actual states ¢p and v.;; Llsat(%p —ip) and
Lgsat(—lSlLlsat(ip —ip)) comprise the observer vector,
whose derivations are detailed in [16], [18]; L and Ly are
the observer gains (large constant, for example 20000) to guar-
antee the sliding mode; sat(z) is the saturation function, which
is defined as

1 r>1
sat(z) =< ¢ —l<a<l. 4)
-1 =< -1

According to the analysis of [16], the system described in (3) is
observable when S; = 1.

The MMC circuit is simulated using Simulink/PLECS. The
observed and actual simulated states are shown in Fig. 2(b),
from which one can see that 7 p and 0.1 accurately match ¢p and
v.1, respectively. The lower arm current and capacitor voltage
can be observed in the same way.

IV. FAULT DETECTION ON AN MMC USING SLIDING
MODE OBSERVER

The basic idea of this detection method is to compare the
observed state and the actual simulated state of the MMC, and if
they are different for a predefined period of time, then a fault has
occurred, and a procedure including assumption, modification,
and judgement to locate the open-circuit fault begins.

The fault detection systems consists of two modes, as speci-
fied in Fig. 3. The process of each mode is detailed as follows.
Consider the upper arm of the MMC circuit in Fig. 2(a), and
suppose that it initially operates in normal, steady conditions.

A. Monitor Mode

The aim of this mode is to determine whether the MMC is
operating normally. ¢p and one of the any capacitor voltages
(for egample v.1) are observed.

It |'LP - ZP‘ > IThreshold’ where Ithreshnld is the threshold
value of current error, and it lasts for 700 time steps (2 us per
step), then an open-circuit fault has occurred. We denote this
moment as ty and go to the detection mode; else, repeat the
monitor mode. Note that the decision of fault occurrence is
made only if the observed-simulated error (|€ p — ip|) lasts for
a period of time (700 time-steps in this letter, empirical value),
this is useful to prevent “false positives”, as the measurement
noise may also lead to |’2p —ip| > IThreshold-
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Reset n
n=0

Count the No. of time-steps
n=n+l

Monitor Mode

e

Assume the faulty Swich is Cell i, Tj, and
modify the SMO Equation accordingly

v

Initial the observed St:fte: I, =1p,V, =V,
Observe i,,v

A
Cl

Change i
orj

Observe 100ms
iP _iP < Ithreshold aIld ‘,}ci -V,

ci

<V

threshold,

Faulty IGBT is
Celli, T,

Fig. 3.

Flowchart of the fault detection system.

B. Detection Mode

The aim of this mode is to locate the open-circuit after its
occurrence.

D1 (Assumption and Modification): Set the assumed faulty
switchas Celli(i = 1,2,3,4),T;(j = 1, 2), modify S; (replace
S with Sp) of SMO in (3) based on the Table II, set ip (to) =
ip(ty), Dei(to) = vei(to), and observe ip and v,;. For example,
if the assumed faulty switch is Cell 4, T, then ip and v, are
observed, and the observer equations are

di 1 X
% =77 <S4(F)U(:4 + S1ve1 + S2ve2 + S3ves
E R
—+ v, — 2) — Llsat(ip — ip)
d{}(f 1 2 il .
dt4 = 654(1:)213 — Lgsat(—lS4<F>L1sat(2p — Zp)). 5)

D2 (Judgement): If |ip — ip| < IThreshold @and |Ug; — vei| <
Vhreshold, Where Vipreshold 1S the threshold value of voltage
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Robustness Analysis and Experimental Validation
of a Fault Detection and Isolation Method
for the Modular Multilevel Converter

Shuai Shao, Alan J. Watson, Member, IEEE, Jon C. Clare, Senior Member, IEEE,
and Pat W. Wheeler, Senior Member, IEEE

Abstract—This paper presents a fault detection and isolation
(FDI) method for open-circuit faults of power semiconductor de-
vices in a modular multilevel converter (MMC). The proposed FDI
method is simple with only one sliding-mode observer (SMO) equa-
tion and requires no additional transducers. The method is based
on an SMO for the circulating current in an MMC. An open-circuit
fault of power semiconductor device is detected when the observed
circulating current diverges from the measured one. A fault is lo-
cated by employing an assumption-verification process. To improve
the robustness of the proposed FDI method, a new technique based
on the observer injection term is introduced to estimate the value
of the uncertainties and disturbances; this estimated value can be
used to compensate the uncertainties and disturbances. As a result,
the proposed FDI scheme can detect and locate an open-circuit fault
in a power semiconductor device while ignoring parameter uncer-
tainties, measurement error, and other bounded disturbances. The
FDI scheme has been implemented in a field-programmable gate
array using fixed-point arithmetic and tested on a single-phase
MMC prototype. Experimental results under different load condi-
tions show that an open-circuit faulty power semiconductor device
in an MMC can be detected and located in less than 50 ms.

Index Terms—TFault detection and isolation (FDI), modular mul-
tilevel converter (MMC), sliding-mode observer (SMO).

I. INTRODUCTION

HE modular multilevel converter (IMMC) is the state of the
T art in multilevel converters and is receiving great interest
both from academia and industry. It has a number of desirable
features such as modular configuration, low harmonic distortion,
low-voltage stress on the semiconductor devices, high-voltage
and high-power capability, and simple realization of redundancy
[1]. In addition, the cells of an MMC are fed by capacitors and
no multiphase transformers are required. A comprehensive in-
troduction of the operation of the MMC is given in [2]. The
review paper [3] summarizes the latest achievements regarding
the MMC in terms of modeling, control, modulation, applica-
tions, and future trend.
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Power semiconductor switches are among the most failure-
prone components in a power converter and each of these devices
is a potential failure point [4]. With large numbers of semicon-
ductor devices, the possibility of fault occurrence is much larger
than for normal two-level voltage-source converters (VSCs).
Faults in power semiconductor devices cause a power converter
operating far away from its setting point and this abnormal oper-
ation cannot be overcome by a feedback controller. If the faulty
operation is allowed, other devices may be damaged and a shut-
down of the plant may follow. Therefore, it is vital to detect and
isolate these faults immediately after their occurrence.

Fault detection and isolation (FDI) deals with detecting
anomalous situations [fault detection (FD)] and addressing their
causes (fault isolation, FI) [5]. An FDI scheme can be im-
plemented either by hardware method or analytical (software)
method [5], [6]. Hardware FDI employs repeated components
or additional sensors, and a fault can be obtained if the behav-
ior of the process components is different from the redundant
ones, or the additional sensors detect anomalous signals. It is
straightforward and reliable but increases the cost, size, and
hardware complexity of the plant. The basic idea of analytical
FDI is to check the consistency between the actual system be-
havior and its estimated behavior [7]. The estimated behavior
can be obtained either from a mathematical model of the system
(for example, using observers) or an analysis of the histori-
cal data (for example, using data mining or neural networks).
Although the algorithm is more sophisticated, the cost and hard-
ware complexity of employing the analytical method is less than
that for the hardware method. The application of the analytical
FDI methods is boosted by the great advances of the computer
technology in recent decades [6].

There are two types of faults seen in a fully controlled power
semiconductor device: short-circuit fault (remains ON regard-
less of the gate signal) and open-circuit fault (remains OFF
regardless of the gate signal). Any short-circuit fault needs to be
detected within 10 us to save the semiconductor devices from
destruction and to avoid a shoot-through fault with the comple-
mentary device [8]. A short circuit in an insulated-gate bipolar
transistor (IGBT) is usually detected using a hardware circuit,
often with additional sensors and associate circuits. These sen-
sors and circuits are usually integrated in a gate driver to form
an active/smart gate driver [9], [10]. The additional sensors and
circuits add extra cost and size to the system. Furthermore, these
active gate drivers can fail themselves due to their complexity
and hence decrease the reliability of the power converter.

0885-8993 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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x 10

0 0.05 0.1
time (s)

Fig. 1. Simulation results of an MMC with parameters same as an industrial
24-MW MMC and an open-circuit fault occurs at 0.1 s: from top to bottom,
output voltage (v, ), output current (i, ), arm currents (¢, and ¢, ), and capacitor
voltages (v).

This paper deals with detection and isolation of an open-
circuit faulty switch in an MMC. The typical characteristics of
an MMC in the event of an open-circuit fault in a power de-
vice is shown in Fig. 1, where the parameters are same as an
industrial 24-MW MMC [11] and an open-circuit fault occurred
at 0.1 s. Only one of the phases is considered. It can be seen
that an open-circuit fault is not fatal immediately to an MMC;
however, the fault needs to be detected and removed within
0.1 s to avoid secondary damages on other devices. The cause
of an open-circuit fault can be various: lifting/fusing of bonding
wires, a driver failure, or a communication problem between the
controller and driver. The gate driver is recognized as the third
most failure prone components according to an industry-based
survey [12]. The simplest detection method is to use an active
gate driver as mentioned previously. Analytical redundancy can
be used to detect an open-circuit fault as this type of fault is not
fatal immediately and can be tolerated by the power converter
for some time [13]. Several analytical FDI methods based on
the analysis of the output voltage waveform are reported. In
[14], a faulty cell in a flying capacitor converter is detected and
localized by analyzing the switching frequency of the output
phase voltage. This technique has also been applied to a cas-
caded H-bridge [15] where an open- or short-circuit fault can be
detected. In [16], the characteristics of the output phase voltage
are analyzed in the time domain, and the occurrence of a fault is
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detected by the degradation of the output voltage, while the fault
is located by comparing the output phase voltage with all the
possible phase fault voltages. In [17], an artificial intelligence
FDI algorithm is proposed, where the historical data of the out-
put phase voltages both in normal and faulty conditions are used
to train a neural network. Survey [18] has presented a compre-
hensive review of the reliability of power electronics systems
including methodologies of assessing reliability, methods to de-
tect and locate faults as well as fault tolerate operation. Survey
[19] has summarized the recent fault tolerance techniques for
three-phase VSCs.

A sliding-mode observer (SMO)-based FDI technique for an
MMC was proposed in [20] and [21], where a faulty power
semiconductor device can be detected and located within 100
ms. The work presented in this paper is an improved method.
This method is simpler using only one SMO equation and can
detect and locate an open-circuit fault in less than 50 ms. Fur-
thermore, a technique is proposed to compensate for any pa-
rameter uncertainties, measurement errors, and other bounded
disturbances. The resultant FDI scheme can detect an open-
circuit faulty power semiconductor device while rejecting any
uncertainties and disturbances. The practical implementation of
the SMO-based FDI scheme in a field-programmable gate array
(FPGA) is also discussed in this paper and the experimental
results at different load conditions are presented.

II. SLIDING-MODE OBSERVER
A. Introduction

An observer is a mathematical replica of a system to estimate
its internal states, driven by the input of the system and a signal
representing the discrepancy between the estimated and actual
states [22]. In the earliest observers such as the Luenberger
observer, the differences between the estimated outputs and the
actual outputs of the plant are fed back to the observer linearly,
and the estimated states cannot converge to the measured states
in the presence of a disturbance [22], [23]. The SMO employs
a high-gain switching function of the discrepancy between the
estimated and actual outputs to force the estimated states to the
actual states asymptotically.

A first-order system (1) is used in this paper

T =ar—+ u. (1)
An SMO for (1) is introduced

&= a + bu+ Lsgn(z — #) )
1, x>0

sgn(z) = < 0, =0 3)
-1, <0

where Z donates the estimated/observed state of x and L de-
notes the observer gains designed to drive & — x in finite time.
Subtracting (2) from (1) yields the dynamic error between the
observed and measured states

A

I =ai— Lsgn(%),i = o — . (4)
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Fig. 2.  Single-phase eight-cell MMC converter used for simulation.

TABLE I
CIRCUIT PARAMETERS USED IN THE SIMULATION

DC voltage £, + E, 6000V
Average circulating current 1. 120 A
Nominal voltage of the cell capacitors Ve 1500V
Capacitance of cell capacitors C 4mF
Inductance of the arm inductors l 3 mH
Load 5Q,4mH

Choosing L > |aZ|, we obtain
it = #(ax — Lsgn(z)) = |#(Jaz| — L) < 0 &)

which will force  and  to zero and keep zero thereafter, this
motion along a line is the so-called sliding mode [24].

B. SMO for an MMC

An SMO can be built for an MMC based on (2). In this paper
a single-phase eight-cell MMC is considered; nevertheless, the
method is versatile and can be used for MMC with hundreds of
cells.

The circuit diagram and parameters of the MMC used for
the analysis and simulation are presented in Fig. 2 and Table I,
respectively. T; and Ty in Fig. 2 represent the upper and lower
power semiconductor devices in a cell.

According to the Kirchhoff’s voltage law, we obtain the fol-
lowing equation for the MMC (see Fig. 2):

diy | diy

8
= _Zsivci +Ep +En (6)
dt dt e

where i, and ¢, are the upper and lower arm currents, [ is the
inductance of arm inductors, I, and E,, are the dc voltages, and
ve; and S; are the capacitor voltage and switching state of the
cell ¢, respectively. S; is defined in Table II, where g, and g- are
the gate signals for the upper and lower switch in a cell.

Since the circulating current of the MMC converter is ¢, =
(ip +15)/2 [25], (6) can be rewritten as

di,
dt

8
20— ==Y Siv+E, +E,. @)
i=1
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TABLE II
SWITCHING STATE S IN NORMAL CONDITIONS

S Driving signals
1 g1=1,92=0
0 g1 =0,92 =1

il

0.04 0.06 0.08 0.1
Time (s)

...... Observed current

0.02

Actual current

Fig.3. Simulation waveforms of i, and 22 when the MMC is fault free.

Based on (2) and (7), an SMO can be obtained for the MMC

di 1 (< .
= Sivei —E, —E, | + Lsat (i, —1. ). (8)
dt 21 (1_21 P ) ( )

It is noted that a saturation function sat(x) (9) is utilized
instead of sgn(x) for less chattering of the observed states ac-
cording to [26]

1, x> h
sat(z) = ¢ «/h, —h <z <h, h>0 )
-1, x<-h

where h is a constant.

A simulation has been carried out in SIMULINK/PLECS to
verify the SMO (8). The parameters of the MMC are listed in
Table 1 and the observer gain L is 6 x 10* and h = 1. Fig. 3
shows the simulation results where it can be seen that L follows
1, closely.

III. FAULT DETECTION AND ISOLATION USING SMO
A. Mathematical Basis

The FD is first considered and a fault is added to the first-order
system

T=axr+bu+kf (10)

where f represents the value of the fault and & the corresponding
coefficients. It is noted that f is often a very large value and
cannot be overcome by the feedback control.

The difference between the observed and measured states can
be obtained by subtracting (10) from (2)

I =ai+kf— Lsgn(Z). (11)
If we choose

L < |kf] (12)
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Howeyver, this method is not suitable for the detection and isola-
tion of a short-circuit faulty device due to the very fast response
requirement (10 us). It is suggested that the proposed method
works together with the hardware detection methods (for short-
circuit fault) to achieve a more reliable MMC.

To improve the robustness of the FDI method, a technique
is proposed to estimate parameter uncertainties, measurement
errors, and other bounded disturbances, and the estimated value
is used to compensate for the influence of the uncertainties and
disturbances. As a result, the proposed technique can detect
and locate an open-circuit faulty power semiconductor device
while ignoring the parameter uncertainties, measurement noise,
or other disturbances.

The FDI algorithm has been implemented in an FPGA using
fixed-point arithmetic and has been tested on an experimental
scaled-down, single-phase, eight-cell MMC converter. Experi-
mental results have verified the analysis and simulation results.
According to the experimental results, it is possible to use a
smaller threshold value to detect and locate an open-circuit fault
in less than 20 ms.

This FDI method can be applied to other converters with
modular topologies employing similar analysis and principles.
Furthermore, it is possible to apply this method for the detec-
tion and isolation of multiple open-circuit faults in an MMC,
although it will take longer to find the faults as there are many
possible fault scenarios to be assumed.
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Abstract—This paper proposes a technique able to detect and
isolate multiple open-circuit faults of power switches in an MMC.
Based on a sliding mode observer (SMO), the basic idea of this
FDI method is to compare the observed states with the measured
states. The fault occurrence is detected when the difference
between the observed and measured arm current is larger than a
threshold value; while a cell is identified as faulty if the difference
between the observed and measured capacitor voltage is larger
than a threshold value. The implementation is simple and requires
no additional sensors. Simulation results demonstrate that open-
circuit faults occurring simultaneously on four different cells in
an MMC can be detected and isolated within 200ms.

I. INTRODUCTION

One of the most important applications of the modular mul-
tilevel converter (MMC) is high-voltage direct current (HVDC)
transmission [1], [2]. The first commercial HVDC project
using MMC, the Trans Bay Cable project, went in service
in 2010 transmitting up to 400MW and a few other similar
projects with power rating between 576MW and 1000MW
have been reported [3]. With hundreds of cells per converter
arm in these practical MMC systems, the possibility of a fault
occurrence in the semiconductor switching devices increases
significantly compared with two- or three-level voltage source
converters.

For a power switch, there are two types of faults: short-
circuit fault (remains ON regardless of the gate signal) and
open-circuit fault (remains OFF regardless of the gate signal).
Short-circuit faults are often detected by a de-saturation detec-
tor integrated in the gate driver. This paper deals with open-
circuit faults on power switches. The causes of an open-circuit
fault of a semiconductor switching device can be various:
an open-circuit fault of the device itself (i.e. lifting/fusing of
bond wires), failure of the driver or communication problems
between the controller and driver. In the presence of an open-
circuit fault of a device in an MMC, the capacitor voltage of
a cell cannot be controlled. This can lead to possible damage
of capacitors and other switches, and a shut-down of the plant
may follow. Therefore, it is vital to detect and isolate these
faults immediately after their occurrence.

Fault detection and isolation (FDI) deals with detecting
anomalous situations (fault detection) and addressing their

978-1-4799-5776-7/14/$31.00 ©2014 IEEE

causes (fault isolation) [4]. An FDI scheme can be im-
plemented either using hardware redundancy or analytical
(software) redundancy [4], [S]. Hardware redundancy employs
repeated components or additional sensors, and an fault can be
obtained if the behaviours of the process components are dif-
ferent from the redundant ones, or the additional sensors detect
anomalous signals. Hardware redundancy is straightforward
and reliable but increases the cost and complexity in the case
of an MMC plant. The basic idea of analytical redundancy is
to check the consistency between the actual system behaviour
and its estimated behaviour [6]. The estimated behaviour can
either be obtained from a mathematical model of the system
(for example observers) or analysis of the historical data (for
example using data mining or neural networks). Although it
requires a rather sophisticated algorithm, the cost and hardware
complexity of an analytical solution is less than a hardware
redundancy solution.

For the FDI of a multilevel converter, the simplest way
is to add additional current and voltage transducers to sense
the current through and voltage across each power switch, this
is however very costly. In [7], the characteristics of the gate
signal are analysed to detect an open-circuit fault or short-
circuit fault of a switch. The phase voltage is also used to
detect and locate a fault: in [8], [9], the phase voltage is
analysed in the frequency domain, while in [10] the phase
voltage is analysed in the time domain.

In [11], [12], a single open-circuit fault has been detected
and isolated using a sliding mode observer (SMO). This paper
presents a method using an SMO to detect and isolate faulty
cells when there are multiple faults occurring simultaneously in
power switches. This method uses the inputs which are already
available in the control system and requires no additional sen-
sors. A detailed simulation study has shown that the potential
to locate one or more open-circuit faults within 200ms.

II. SLIDING MODE OBSERVER

An observer is a contrivance designed from a real system,
generally in the same mathematical form as the original
system, so as to estimate its internal state [13]. An SMO
uses a high gain feedback in the observer vector (normally in
the form of a high frequency switching function, for example
the saturation function of an observed-measured error, as (3)
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Fig. 1. An eight-cell single phase MMC.

TABLE 1. SWITCHING STATE S OF A SUBMODULE

S Driving signals
' g1=1,g2=0
0] 91=0,g2=1

and (4) present) to force the observed output to converge to a
measured output [13][14]. The SMO offers desirable features
such as robustness to parameter uncertainty and insensitivity
to measurement noise [13], [15], [14].

Fig. 1 is an eight-cell single phase MMC. According to
the Kirchhoffs voltage law (KVL), its characteristics can be
described by

8
ZP%P'FlNiN:_ZSchj_FE
j=1
1
Ciej=5;-ip (j=1,2,3,4) M
Ciej =95;-in (j=5,6,7,8)

where ip and i are the upper and lower arm currents, [p and
[y are the inductances of the upper and lower arm inductors, £/
is the DC voltage, v.1, Ve, - - , Ve are the capacitor voltages
of Cell 1 to 8, C' is the capacitance of the capacitors of cells
and S; is the switching state of the SM j and it is defined in
Table I.

If we let i, = k-ip + iy, where k = lp/ly, the first line
of (1) can be rewritten as

8
. 1
ia = *E(Z Sjve; — E). @)
j=1

An SMO can be constructed to observe the arm current
based on (2):

—E| +Lysat (ia—%a). 3)

where ia donates the observed current, L; is the observer gain
and sat(z) is the saturation function define as

1 x>h
sat(z) = { x/h —h<x<h, h>0 4)
-1 zz<-h

When the MMC converter works normally, z, converges to
i,. Indeed, subtracting (3) from (2) yields

%a = —Lysat (iu) ,2(1 2 lg — g- 5)

Choosing L, > 0, we obtain i,iq = —ngasat(ga) < 0,
which will force %a — i, in a finite time. A larger number
is often chosen for L, to overcome the influence of the
disturbances and uncertainties.

A simulation is carried out in SIMULINK/PLECS with
circuit parameters in Table II. Fig. 2 shows the simulated
results. In the upper part of Fig. 2, the MMC converter operates
normally and the observed current i, follows the measured
current i, closely. In the bottom part of Fig. 2, an open-circuit
fault occurs in the switches of both Cell 1 and 6, and i,
diverges from 7, significantly. This phenomenon, which will
be detailed in the following sections, can be used for fault
detection and isolation.

TABLE II. CIRCUIT PARAMETERS USED IN THE SIMULATION.
DC voltage E 12800V
DC capacitor voltage Ve 3200V
Upper arm inductor lp 3.3mL
Lower arm inductor In 3mL
Cell capacitors C 2.2mF
Observer gain Ly 320,000
Observer gain Lo 10,000
Threshold value for FD Iip 300
Threshold value for FI Vin 400

III.  FAULT DETECTION AND ISOLATION ALGORITHM FOR
MMC

The FDI algorithm has two parts: fault detection (FD) and
fault isolation (FI). The FD mode monitors whether the MMC
is healthy and the FI mode is used to locate the faulty cells
and bypass them.

A. Fault Detection (FD)

As we noticed from Fig. 2 in Section II, the observed
current diverges from the measured current after the occurrence
of the open-circuit faults. In general faults at any cell will be
reflected in ¢,, and under faulty conditions (2) becomes

io=——0_ Siwe; — E) + fi. ©6)

where f1 donates the value of a fault, it is a large value and
cannot be eliminated by feedback control and thus it needs
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Abstract

This paper presents a fault detection and isolation (FDI) method for a Modular Multilevel Converter
(MMC). This method can locate an open-circuit faulty device accurately and quickly. Based on a sliding
mode observer (SMO) and a switching model of a half bridge, the approach is to assume the location of
the fault, modify the observer equation and then compare the measured and observed states to verify, or
otherwise, the assumption for possible fault locations. This technique requires no additional measure-
ment elements and can easily be implemented in a microcontroller. The operation and robustness of the
proposed method are confirmed using simulation results.

Introduction

After being proposed in 2001 by Marquardt [1], the modular multilevel converter (MMC) has gained
more and more attention. Besides the normal features of multilevel converters such as a modular struc-
ture, higher voltage capability, reduced voltage derivatives (dv/dr) and high quality output voltage [2],
the MMC does not require a multipulse transformer as its modular cells are fed by floating capacitors [3].

Fault detection and isolation (FDI) deals with monitoring a system, detecting anomalous situations (fault
detection) and addressing their causes (fault isolation) [4, 5]. FDI can be implemented using hardware
redundancy or analytical (software) redundancy. Hardware redundancy employs additional sensors, or
redundant components in parallel with the process components, and an indication of the occurrence of a
fault can be obtained if the behaviours of the process components are different from the redundant ones,
or if the additional sensors detect abnormal signals [4, 6]. Analytical redundancy indicates a fault based
on the discrepancy between the measured outputs and their estimations obtained through mathematical
calculations. These mathematical approaches include the model-based approach and signal processing
technique. The performance of an FDI scheme can be assessed using criteria such as [4]: (a) speed
of detection/isolation, (b) sensitivity to incipient faults, (c) fault alarm rate, (d)missed fault detections,
(e)incorrect fault isolation.

FDI is an important issue for an MMC. Although the MMC can tolerate an open-circuit fault for a number
of cycles, the output voltage and current are distorted, moreover, the capacitor voltages of faulty arm will
keep increasing, leading possibly to further destruction on other switches and capacitors (or the need to
shut-down). Therefore it is vital to locate the open-circuit fault after its occurrence and take measures to
reconfigure the circuit.

Given the large numbers of identical cells (half-bridges) and symmetrical structure of the converter, the
process of addressing an open-circuit fault in an MMC is challenging if significant extra cost is to be
avoided. Hardware redundancy can be used to detect faults by adding additional sensors to each semi-
conductor switching device [7], to each cell [8], or employing a gate drive module capable of detecting
faults and providing feedback [9]. These additional sensors and signals increase both the cost and imple-
mentation complexity.

There are a number of analytical FDI methods available for voltage source converters(VSCs) [10, 11].
For a two-level VSC, an open-circuit fault can be located by detecting the current trajectory employing



Park’s Vector [12] or by comparing the actual AC voltage with its reference [13]. These methods are
however not suitable for an MMC, because there is not enough information to locate the fault.

In [14] the high frequency harmonics of the output voltage are used to locate the faulty cell of a cascaded
H-bridge (CHB). Potentially this technique can also be employed for an MMC. The technique analyses
the magnitude of the switching frequency component (vy) and the faulty cell can be located according
to the angle of v;. Nonetheless, the faulty device cannot be located and it is easy to misdiagnose during
transient operation [14].

Artificial intelligence (Al)-based techniques can also be applied to fault diagnosis of an MMC or to
other multilevel converters with the advantage of not requiring models of the converters. Fault detection
using a neural network (NN) approach for a CHB was proposed in [11]. The major drawback of these
techniques is accuracy, only 76% in some cases. Moreover, it can take a long time to train the algorithms
for the circuit topology and all the fault scenarios.

This paper proposes a sliding mode observer (SMO) based fault detection method for an MMC (Fig. 1).
The method uses the inputs which are already available as measurement inputs to the control system.
Using this method not only the faulty cell, but also the faulty switching device can be located. Due
to the SMO robustness [15, 16, 17], this method can discriminate an open-circuit fault (for whatever
reason, including gate drive failure) from the disturbance caused by measurement noise and parameter
uncertainty. The fault condition of a semiconductor switching device appearing as an open circuit will
be investigated in this paper.

Cell1

o]
1|

CellN

-
1|

£ Cell N+1
2

Cell 2N

Figure 1: A single phase MMC

Model of A Half-bridge

This section presents the switching model of a half-bridge both in normal and faulty conditions, as these
models are vital for the FDI of an MMC.

(a) (b)

Figure 2: Switching model of half-bridge. (a)Normal condition. (b)Fault condition (an open-circuit fault at 77).



Fig. 2 shows the submodule of an MMC, where g; and g, are the gate signals for switches, and are com-
plementary. When the gate signal is 1, the corresponding switch turns on; when it is 0, the corresponding
switch turns off.

Normal (fault-free) condition

As shown in Fig. 2(a), when g = 1,g, =0, T; is on and 75 is off, thus V,. = V., i4. = i4; alternatively,
when g1 = 0,80 =1, V,e. = 0,ig. = 0. Therefore the relationship between the AC-side and DC-side
voltages and currents can be calculated as

{ Vac:S'Vdc
idc:S'iac

; ()
where S is the switching state given by Table I.

Table II: Switching state S in fault condition

Table I: Switching state S in nor-

" Location of the fault Condition Switching State
mal condition
Normal | Fault
S | Driving signals T g1=1,i,:<0 1 Sr=0
1| g1=1,8=0 Other conditions S SF=3S
0 g1:0,g2:1 T g2=1,iac>0 0 Sr=1
Other conditions S Sp=3S

Fault condition

In the fault condition (one open-circuit fault of the switch), the switching models can still be described
as shown in (1), but the switching states S in (1) have to be modified. Consider the half-bridge with an
open circuit fault at 77, as shown in Fig. 2(b). When g = 1,i,c <0, i, is forced to go through D,
instead of 7 because of the open-circuit fault. Thus, the switching state S should be changed from 1 to
0. For all other conditions, the half-bridge operates as normal. When the open-circuit fault occurs on 75,
the switching state can be modified in a similar way. Table II presents the modifications of the switching
states for a faulty half-bridge.

The analysis assumes ideal devices and instantaneous commutation. The fault detection method is how-
ever robust against non-ideal device characteristics. This is verified in the all of the simulation results
where generous values of 5V and lus are included for the device voltage drop and dead-time delay
respectively.

Sliding Mode Observer of an MMC

An observer is a contrivance designed from a real system, generally in the same mathematical form as
the original system, so as to estimate its internal state [15][18]. An SMO uses a high feedback gain
in the observer vector (normally in the form of a high frequency switching function, for example the
saturation function of an observed-measured error, as (3) and (4) present) to force the observed output
to converge to a measured output [15][17]. The SMO offers desirable features such as robustness to
parameter uncertainty and insensitivity to measurement noise [15, 16, 17]. With a simple realisation, the
SMO can be implemented in a field-programmable gate array (FPGA) [18][19].

A sliding mode observer for a second-order system using the equivalent control method will be developed
first[20, 21], then the SMO equations for an eight-cell MMC and the corresponding simulated results will
be given.

Consider a second-order system which is observable,
R Pl MR T @
by ay an || x by
we can use the high-gain feedback L - sar(x — £) to obtain the observed states

{ )é] =a11% —l—a]z)?z—i-b]u—i-Llsat(xl —)’5]) (3)
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